
Identification Key generation WebService : Installation & Development

Guide

Laboratoire Informatique et Systématique

2011

Abstract

Identification keys are widely used by scientists to identify taxa. This new identification key gen-
eration WebService generates single-access keys on demand, for single users or research institutions.
It receives user input data (using the standard SDD format), accepts several parameters for the key
generation (impacting the key topology and representation), and supports several output formats. Fur-
thermore, key generation automation is possible thanks to the WebService architecture.

Contents

1 Introduction 3

2 WebService installation 3
2.1 Prerequisites . 3
2.2 Installation using the binary packages . 3

2.2.1 Deploying the binary packages on Apache Tomcat 4
2.3 Building the project using the source code . 4

2.3.1 Importing the Eclipse projects . 4
2.3.2 Configuring the project as a Maven project . 4
2.3.3 Configuring the projects’ CLASSPATH . 5
2.3.4 Building the projects . 5

3 Querying an instance of the WebService 5
3.1 PHP clients . 5

3.1.1 S.O.A.P. client example . 6
3.1.2 R.E.S.T. client example . 6

3.2 Java clients . 7

4 WebService configuration 7
4.1 Post-deployment configuration . 7
4.2 Access restriction . 7
4.3 Generated keys automated deletion . 8

4.3.1 Configuring the deletion schedule . 8
4.3.2 Configuring the deletion delay . 8

1

List of Figures

1 Usage Scenarios . 3
2 Deploying a *.war binary package in Apache Tomcat . 9
3 Importing the source code projects into Eclipse . 10
4 Configuring the project as a Maven project . 10
5 Building a project . 10

2

1 Introduction

As a part of the ViBRANT project, the WebService is integrated in the Scratchpads biodiversity networking
tool, with an embedded client component. Hence, a Scratchpads user can use the WebService directly
and transparently from his Scratchpads instance. It is also possible for anyone to develop his own client
component in order to call the WebService directly. The whole WebService and its source code are freely
available, thus allowing large institutions to deploy it on their own network and adapt it to their specific
needs.

There are two main usage scenarios of this WebService :

I A client component is integrated within the Scratchpads1 biodiversity networking tool, making the
WebService available to Scratchpads user transparently.

II The WebService can be called directly from a WebService client. We provide barebones clients written
in Java and PHP, for the 2 communication protocols supported by our WebService; S.O.A.P. 2 and
R.E.S.T. 3

WEBSERVICE

SCRATCHPADS

SDD file URL

KEY file URL

SDD

SDD generator

SDD file URL

KEY file URL KEY

KEY visualization

S
er

vi
ce

 la
ye

r

I

Direct use

ViBRANT project:
Scratchpads integration

II

KEY

SDD

KEY

Identification Key
Generation API

Embedded
Client

Custom client
(e.g. web page, shell script)

Figure 1: Usage Scenarios

2 WebService installation

2.1 Prerequisites

The WebService is coded in the Java programming language, using the J2EE framework, thus the host
machine needs to have a recent JDK (v. ≥ 6) installed, as well as a J2EE web application server (e.g. Apache
Tomcat, WebSphere or WebLogic). The Java Virtual Machine is freely available on the web4, and several
J2EE web application servers (such as Apache Tomcat) are freely available.

2.2 Installation using the binary packages

The WebServices are available in 2 binary packages :

• IK WS REST-x.x5.war : the R.E.S.T. protocol WebService

1http://scratchpads.eu/
2http://en.wikipedia.org/wiki/SOAP
3http://en.wikipedia.org/wiki/Representational_state_transfer
4http://www.java.com/en/download/index.jsp
5the x-x represents the version number

3

http://scratchpads.eu/
http://en.wikipedia.org/wiki/SOAP
http://en.wikipedia.org/wiki/Representational_state_transfer
http://www.java.com/en/download/index.jsp

• IK WS SOAP-x.x.war : the S.O.A.P. protocol WebService

The two packages can be installed simultaneously on the same web application server. The binary pack-
ages are standard war files, and can be deployed on any J2EE web application server using the standard
deployment procedure.

2.2.1 Deploying the binary packages on Apache Tomcat

Deploying a *.war file is pretty straightforward :

1. Go to your tomcat server manager page : http://yourserver:8080/manager/html

2. Click on the Choose file... button next to the Select WAR file to upload at the bottom of
the page.

3. Browse your filesystem to find the *.war file you want to deploy.

4. Click on the Deploy Button.

(cf. figure 2 on page 9)

2.3 Building the project using the source code

The source code of this project is freely available on our server 6. It is packaged as a zip file that contains
3 Eclipse projects :

• IdentificationKeyAPI : the project that contains the API.

• IK WS REST : the project that contains the R.E.S.T. WebService.

• IK WS SOAP : the project that contains the S.O.A.P. WebService.

Both WebService projects depend on the API to compile properly, i.e. they require the presence of a *.jar
package assembled from the API project in their /WebContent/WEB-INF/lib directory. The projects’
dependencies are managed with the Maven utility, thus to build the 3 projects, you will need to have a
Maven plugin7 installed in your Eclipse environment.

2.3.1 Importing the Eclipse projects

To import the projects into Eclipse :

1. In the File menu, select the Import... option.

2. Select the General/Existing Projects into Workspace import procedure.

3. Using the Select archive file dialog, select the IK WS.zip file, select the 3 project, and click
Finish.

(cf. figure 3 on page 10)

2.3.2 Configuring the project as a Maven project

After importing the projects, you will need to convert them to Maven projects in order to manage the
dependencies. To do so, right-click on each project, and select the Configure → Convert to Maven

project option. Once it’s done, Maven will download automatically the required dependencies (cf. figure
4 on page 10).

6http://www.identificationkey.fr/index.php/downloads
7http://eclipse.org/m2e/

4

http://www.identificationkey.fr/index.php/downloads
http://eclipse.org/m2e/

2.3.3 Configuring the projects’ CLASSPATH

API project Since the API project contains properties, css and js files, you need to make sure that
these file types are included in the project’s CLASSPATH. To do so, in Eclipse, right-click on the project in
the Package Explorer 8 and select Properties, this will open a new preference window. In this window,
click on Java Build Path in the left sidebar and select the Source tab. Select the Included parameter,
and ensure that it contains the following inclusion patterns :

• **/*.java

• **/*.properties

• **/*.css

• **/*.js

If it does not, edit it.

WebService projects Both WebService project contain properties files, so they only need the **/*.properties
inclusion pattern.

2.3.4 Building the projects

1. To build the API project, simply right-click the project in Eclipse, and select Run as → Maven

package, Run as → Maven install or Run as → Maven assembly. This will generate a *.jar
file in the target folder of the project.

2. Copy the *.jar file containing the API in the /WebContent/WEB-INF/lib folder of the WebService
project you want to build.

3. The Sigar Library files9 also need to be added manually in the /WebContent/WEB-INF/lib folder
of the project

4. Right-click the project in Eclipse, and select Run as → Maven package, Run as → Maven install

or Run as → Maven assembly. This will generate a *.war file for the WebService project.

You now have a *.war file that can be deployed on your web application server (cf. section 2.2).

3 Querying an instance of the WebService

The WebService can be queried from a Scratchpads instance, but it can also be queried from any WebService
client. Here are code samples that can be used to develop your own WebService client, written in PHP,
for both the S.O.A.P. and the R.E.S.T. protocol. Equivalent examples are also written in Java, but are
available separately, as Eclipse projects.

3.1 PHP clients

The source code of the two PHP clients are available on our server10

8You can also use the Project Explorer or the Navigator view
9available here : http://www.hyperic.com/products/sigar

10http://www.identificationkey.fr/index.php/downloads

5

http://www.hyperic.com/products/sigar
http://www.identificationkey.fr/index.php/downloads

3.1.1 S.O.A.P. client example

<?php

$wsdl=’http :// WebService_hostname :8080/ IK_WS_SOAP -1.0/ identificationKey?wsdl’;

$options = array(’compression ’=>true , ’exceptions ’=>false , ’trace’=>true);

$client = new SoapClient($wsdl , $options);

$param ->sddURL = "http :// yourServerURL/inputFileSDD.xml";

$param ->format = "pdf";

$param ->representation = "tree";

$param ->fewStatesCharacterFirst = "yes";

$param ->mergeCharacterStatesIfSameDiscimination = "no";

$param ->pruning = "no";

$param ->verbosity = "h";

$param ->scoreMethod = "xper";

$res = $client ->createIdentificationKey($param);

if(is_soap_fault($res)){

echo ’fault : ’;

var_dump($client ->__getLastRequest ());

var_dump($client ->__getLastRequestHeaders ());

}else {

//echo ’<pre >’. var_export($res , true).’</pre >’;

//echo $client ->__getLastResponse ();

echo $res ->identificationKeyResponse;

}

?>

3.1.2 R.E.S.T. client example

<?php

$service_url = ’http :// WebService_hostname :8080/ IK_WS_REST -1.0/ identificationKey ’;

$curl = curl_init($service_url);

// Request parameters

$sddURL = ’http :// www.infosyslab.fr/vibrant/project/test/Cichorieae -fullSDD.xml’;

$format = ’html’;

$representation = "tree";

$fewStatesCharacterFirst= "no";

$mergeCharacterStatesIfSameDiscimination = "no";

$pruning = "no";

$verbosity = "h";

$scoreMethod = "xper";

// urlencode and concatenate the POST arguments

$curl_post_data = ’sddURL=’.urlencode($sddURL).’&format=’.$format.’&representation=’.

$representation.’&fewStatesCharacterFirst=’.$fewStatesCharacterFirst.’&

mergeCharacterStatesIfSameDiscimination=’.

$mergeCharacterStatesIfSameDiscimination.’&pruning=’.$pruning.’&verbosity=’.

$verbosity.’&scoreMethod=’.$scoreMethod;

curl_setopt($curl , CURLOPT_RETURNTRANSFER , true);

curl_setopt($curl , CURLOPT_POST , true);

curl_setopt($curl , CURLOPT_POSTFIELDS , $curl_post_data);

$curl_response = curl_exec($curl);

curl_close($curl);

echo $curl_response;

?>

6

3.2 Java clients

The two Eclipse projects that contain the java clients are available on our server 11. The mechanism to
import these project is similar to the import mechanism used with the WebService projects (cf. section 2.3.1
and figure 3, page 10). After the import, you must configure the projects as Maven projects (cf. section
2.3.2 and figure 4, page 10).

4 WebService configuration

4.1 Post-deployment configuration

Once the WebService is successfully deployed on your web application server, you must stop the server, put a
new file named confOverridable.properties in the /WEB-INF/classes/main/resources directory12

of the web application you just deployed. This file contains some parameters used by the WebService. The
minimum content of this file is as follows :

--

The two parameters below determine where the files created by the

WebService will be located on the host server file system.

For generatedKeyFiles.prefix , if webapps/ doesn ’t work , you

may have to put the absolute path to the webapps folder

e.g. /var/lib/tomcat6/webapps

generatedKeyFiles.prefix = webapps/

generatedKeyFiles.folder = generatedKeyFiles/

--

the property below sets the delay (in seconds) after which any

file generated by the WebService is deleted

2592000 is the number of second for 30 days.

generatedKeyFiles.delete.period = 2592000

--

host = http :// yourServerHost :8080/

--

the following property may contain any message you want , that

indicates who created the identification key (e.g. your institution)

message.createdBy = created by *placeholder*

--

the following property contains the email address of the webservice

administrator

email.webmaster = webmaster@yourdomain.com

After that, restart your web application server, the WebServices should be functional.

4.2 Access restriction

If you re-deploy the identification key generation WebService on your own network, you may wish to restrict
the range of IP addresses that will be able to query the WebService. If you deployed the WebService
using Apache Tomcat, you can use IP-based restrictions by adding the following code snippet to the
$CATALINA HOME/conf/server.xml file :

<Context path="/ApplicationName" docBase="$CATALINA_HOME/webapps/

ApplicationName" workDir="$CATALINA_HOME/webapps/ApplicationName">

11http://www.identificationkey.fr/index.php/downloads
12If this directory doesn’t exist, you’ll have to create it yourself

7

http://www.identificationkey.fr/index.php/downloads

<Valve className="org.apache.catalina.valves.RemoteAddrValve" allow=

"192.168.*.* ,10.0.*.*" deny="*"/>

</Context >

By modifying the allow and deny values of the Valve tag, you can specify which IP range should be
allowed to query the service, and which IP range should be denied to query the webservice. Keep in mind
that in case of conflict between allow and deny, the allow parameter overrides the deny parameter.

4.3 Generated keys automated deletion

The identification keys generated by the WebService are stored inside the web application server directory
(in webapps/generatedKeyFiles by default). To avoid hard drive saturation, there is an automated
deletion mechanism implemented in the WebService : every night, at 4:18 am, the WebService deletes
every file in webapps/generatedKeyFiles that is more than 30 days old. You can modify the deletion
schedule, as well as the delay after which a file is deleted

4.3.1 Configuring the deletion schedule

To modify the deletion schedule, you need to edit the WEB-INF/web.xml file of the WebService, and modify
the text located in the <param-value> node in the following web.xml snippet :

<servlet >

<display -name>Scheduler Servlet </display -name>

<servlet -name>SchedulerServlet </servlet -name>

<servlet -class>SchedulerServlet </servlet -class>

<init -param>

<param -name>cronSchedule </param -name>

<param -value>18 4 * * * ?</param -value>

</init -param>

<load -on -startup >2</load -on -startup >

</servlet >

The schedule is passed as a cron schedule (http://en.wikipedia.org/wiki/Cron)

4.3.2 Configuring the deletion delay

To modify the file deletion delay, i.e. the time lapse after which a file is considered to be too old and is
due for deletion (30 days by default), you need to specify a new delay in confOverridable.properties

(cf. part 4.1 on page 7), by setting a new value (in seconds) to the generatedKeyFiles.delete.period

property.

8

http://en.wikipedia.org/wiki/Cron

Figure 2: Deploying a *.war binary package in Apache Tomcat

9

Figure 3: Importing the source code projects into Eclipse

Figure 4: Configuring the project as a Maven project

Figure 5: Building a project

10

	Introduction
	WebService installation
	Prerequisites
	Installation using the binary packages
	Deploying the binary packages on Apache Tomcat

	Building the project using the source code
	Importing the Eclipse projects
	Configuring the project as a Maven project
	Configuring the projects' CLASSPATH
	Building the projects

	Querying an instance of the WebService
	PHP clients
	S.O.A.P. client example
	R.E.S.T. client example

	Java clients

	WebService configuration
	Post-deployment configuration
	Access restriction
	Generated keys automated deletion
	Configuring the deletion schedule
	Configuring the deletion delay

